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Abstract

In this work, a developmental hierarchy is applied to the evolution of a rela-
tively complex physics-based character animation controller. This means that
the artificial neural network that makes up that controller is composed from
a number of interdependent sub-networks; the control modules. It is hypothe-
sized that evolving these modules one-by-one, with each of them dependent
on its predecessors, will allow evolution to converge faster, and possibly to
better results, than for a pair of baseline controllers. Both muscle-based actu-
ation and joint torque-based actuation are tested, but only the latter succeeds.
It is demonstrated that developmental hierarchies can lead to faster evolution-
ary convergence, while dealing with compound animations more adequately.
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Chapter 1

Introduction

Before an infant is able to toddle about, it has usually mastered several other motor skills,
such as rolling over, crawling, and sitting upright. Some of these abilities are necessary in
learning to walk, as they lead to the development of both the required neural pathways
and physical strength. In much the same fashion it can be argued that the ability to walk
underlies the abilities of jumping and running, which, in turn, may underlie more com-
plex activities, such as cycling and dancing. There seems to be a developmental hierarchy
of motor skills in humans.

In the field of computer animation, and more specifically character animation, motion
data is usually captured or generated in a fairly direct manner. If a virtual character needs
to be walking, the required motion data is either hand-made, obtained through motion
capture performance, or generated procedurally. Either way, this is a difficult and time-
consuming problem, because these methods require a lot of man-hours per animation,
while very little motion data can be used in more than one animation. This leads to the
investigation of ways to automate large parts of the animation process.

The methods that are proposed in this thesis aim to re-use physics-based animation
controllers by combining them in a hierarchy that is similar to the order in which humans
develop motor skills. These modular animation controllers consist of artificial neural net-
works that are generated through a process of artificial evolution. They are applied to,
and evaluated in, a physics-based simulation of a virtual human character. The idea be-
hind this is that it is easier to train a neural network on a new task if it already has the
solutions to any underlying problems at its disposal. For example, it may be easier to
learn how to get from a supine or prone position to balanced stance if previous solutions
for rolling over, crouching, and getting up are readily available. Using such lower level
skills may lead to converging on a solution to a new task faster, because any commonali-
ties between the new task and the previous tasks do not have to be trained for anymore.
Also, choosing a particular structure and ordering for the developmental hierarchy that
match the development of human motor skills, may provide a bias towards evolving
more natural solutions.
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This hierarchical organization of motor skills is supported by neuroscientific and psy-
chological research. Berridge [6] provides an overview of the work of Teitelbaum [27], in
which he describes one of his principles of

“. . . hierarchy and levels of function. This hierarchical principle addresses
how higher levels of brain systems control the activity of lower brain levels.”

In his extensive theory of cognitive development, called “skill theory”, Fisher [13] de-
scribes “control and construction of hierarchies of skills”. The developmental hierarchies
that are presented in this work are similar, albeit more simple, to Fisher’s skill levels in
that they deal with skills at different levels and of increasing complexity. However, the
methods that are presented here are purely focused on (sensor-)motor skills, and not cog-
nitive development in general.

1.1 Physics-based character animation

Recent approaches to computer animation are based on physical simulations of both char-
acters and objects. Although the basic ideas have been around for a long time, interactive
physics-based character animation seems to be still in its infancy, as most “commercial
frameworks still resort to kinematics-based approaches when it comes to animating active
virtual characters.” [14]

In the past, artists could animate virtual characters quite convincingly by kinematics-
based techniques, such as keyframing. Many modern approaches also rely on motion cap-
ture (mocap) data to compose animations that are inherently more realistic, because they
are actually generated by a real human. With the constant demand for more and better an-
imations, new projects focus on physics-based animation techniques. The nature of these
approaches ensures that all motion data is physically realistic, while also eliminating the
need for human actors. This is no guarantee, however, that the resulting animations will
also look natural. These aspects, along with ever increasing cheap computing power,
make physics-based character animation a very attractive state-of-the-art research topic.

The use of physics to simulate passive phenomena has seen a slow but steady increase
over the last decades, including simulations of simple objects (e.g. boxes), cloth, fluids,
and ragdolls. One of the main things that effects like these have in common is that they do
not need a lot of control from the artist or end-user. Passive physics are commonly used in
character animation by blending with traditional keyframe animation and motion capture
data to create smooth transitions between actively controlled and reactive animations.
An example of this is a game character being pushed or shot down while climbing or
running, resulting in a rag doll-like animation. The climbing or running part is actively
controlled, while the reaction to the punch or bullet—and the subsequent falling down—
is the result of passive physics. Passive physics are, therefore, great for creating dynamic

2



environments and characters, but another animation system is usually required for the
more active, purposeful animations.

Active physics-based character animation offers less direct control over a character’s
body pose over time than traditional methods would. This is because it works by apply-
ing torques directly at the joint, or by generating them with virtual muscles. These joint
torques lead to a change in the character’s body pose, which traditionally would have
been set more directly by an artist. This means that creation of even basic functions like
balancing or walking is non-trivial, especially when user interaction is allowed. An ad-
vantage of this kind of approach is that it results in more physically correct animations,
particularly because active physics are inherently blending with the effects of passive
physics. However, this does not mean that the resulting animations will be guaranteed
to also look more natural. Simplicity and fine-grained control are traded for physical
correctness, but not necessarily realism.

Directly applying joint torques is not realistic, conceptually, when compared to muscle
actuation in biological organisms, thus giving rise to attempts at using virtual muscle
models to match biology more closely. In the end, this should lead to more natural motion
on top of physical correctness. However, the complexity of the optimization problems in
such simulations is far greater, because each degree-of-freedom of the joints can only be
fully controlled by at least two muscles, while biological organisms usually even have
many more redundant muscles. Also, muscles can span multiple joints, which makes
optimizing muscle group activation patterns a very hard problem to solve. This is further
discussed in Chapter 3.

The methods of hierarchical modular animation controllers that are proposed in this
thesis are designed to use active physics to control a virtual character—including some
effects of passive physics, such as collisions between body parts and external forces.

1.2 Overview

The work that is presented in this thesis is an approach to physics-based and biologically
inspired character animation, in which either joint torques or muscles of a physically
simulated human body are used to generate motion. The scientific contribution of this
approach lies in the method that is used to generate those torques or muscle activation
patterns, which consists of an artificial neural network (ANN) that is created through a
process of artificial evolution, or evolutionary algorithm (EA). The background of this thesis,
therefore, lies on the borders of computer animation and artificial intelligence alike.

The main research goals of this project are to see if the proposed method is suitable to
produce good animation controllers (1) in relatively short training sessions (2). Specifi-
cally, this is hypothesized to work by limiting the evolutionary search space of finding the
parameters and topology of a complex animation controller. This is achieved by imposing
a novel hierarchical and modular design on the final ANN, where the evolution of high-
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level functionality is done step-by-step, as guided by many simple objectives, instead of
by a single, complex fitness function.

All methods used in this work are implemented in the C++ programming language,
using Microsoft Visual Studio 2010 as the IDE and Subversion for source control. Rigid
body simulation and collision handling are done with the Bullet physics library [8], and
visualizations are created through the OpenGL graphics API. The original C++ imple-
mentation of the NEAT method (NeuroEvolution of Augmenting Topologies) [23] is used
to deal with neural networks and their evolution. Many assets and coding examples from
the OpenSim project [10, 11, 31, 4, 5, 18] are used to generate the basic human body sim-
ulation. Training sessions are run on a mid-range to high-end (at the time of writing)
desktop computer, containing an Intel Core i7 920 CPU (4 cores, 8 threads, clocked at
about 2.67 GHz), 6 GB of memory, and a Samsung 830 Series SSD.

The remainder of this thesis is laid out as follows. A short literature study is pre-
sented in Chapter 2, relating this thesis to similar and otherwise relevant works. Chap-
ter 3 describes in detail the methods of generating and evaluating animation controllers,
the results of which are shown in Chapter 5, and discussed in Chapter 6. More detailed
information about the software that is used in—or created for—this project is available in
Appendix B, of which some parameter are listed in Appendix A.
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Chapter 2

Related work

This chapter consists of a short literature study of works that are similar or otherwise
relevant to the methods used in this thesis, particularly with relation to stimulus-response
network control and neuroevolution. Many of the references are also found in a very useful
review paper by Geijtenbeek and Pronost [14], who discuss the state-of-the-art in the field
of interactive character animation by use of simulated physics in great detail.

Physics-based character animation controllers are usually developed in a framework
that consists of multiple components, including a physics simulation, a physics-based
character, and the animation controller itself [14]. For real-time applications, some of the
most commonly used physics engines are Bullet, ODE, Havok, and PhysX. The Bullet
physics library [8] is used in this work for its 3D collision detection and rigid body dy-
namics.

2.1 Stimulus-response networks

The artificial neural networks that form the animation controllers in this work are a type
of stimulus-response network. There are a number of different kinds of stimulus-response
networks, besides artificial neural networks (ANNs), including genetic programs (GPs), and
central pattern generators (CPGs). What these types of networks have in common, is that
they consist of interconnected nodes, or neurons. These nodes are processing elements that
have a variable number of incoming and outgoing connections (links) with other nodes.

In ANNs, the output of each neuron (inspired by axons in biology) is determined by
the weighted sum of all inputs (inspired by dendrites) and the activation function [3, 7], for
which a sigmoid function is often used for computational reasons. The activation function
σ(x) is described by Equation 2.1 and Figure 2.1 [23], where yi is the activation level of
node i, and wji is the connection weight between nodes i and j.

yi = σ

(
N∑
j=1

wjiyj

)
, σ(x) =

1

1 + e−4.924273x
(2.1)
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Figure 2.1: Plot of the activation function as described in Equation 2.1.

Many attempts at using artificial neural networks in physics-based character anima-
tion reduce the complexity of the problem by only looking at 2D characters, and by limit-
ing the number of degrees-of-freedom (DoFs) in the joints [28]. Reil and Husbands [21] use
an ANN with a fixed topology to animate a walking 3D character, by generating target
joint angles that are fed into a proportional-derivative (PD) controller.

Allen and Faloutsos [3] use the same algorithm as is used in this work to optimize
their neural networks, namely NEAT [23]. Therefore, their approach is probably the most
similar to the methods in this work. Both feature the topology of the neural network
growing gradually, allowing for increasingly complex behavior. And, in the same way,
they do not assume any a priori knowledge of the appropriate actuation patterns, but
require only the physical properties of the character model and a simple fitness function.

While also working with joint torques through PD control (see Subsection 3.3.3), rather
than muscle actuation, they manage to produce somewhat unstable (but nonetheless
amusing) locomotion controllers. In contrast, the controllers in this work are not dedi-
cated to generating controllers for just a single task (e.g. locomotion), but rather on a set
of different behaviors. Also, they use more sensor nodes than are found to be necessary
in this work, when looking at the joint torque-based cases. Another important difference
between the two approaches is that they generate two identical ANNs from each genome,
reflecting bilateral symmetry in the human body. In the here presented methods, only in
the muscle-based approach there are some parts of the ANN that are symmetrically du-
plicated, yet the way in which they are interconnected can still be influenced by evolution.

Genetic programs are a different kind of stimulus-response network, in the sense that
they do not deal with input and output activations of nodes like ANNs do. Instead, each
node in the network represents either a logical operation (AND, OR, XOR, . . . ), decision
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operation (IF, THEN, ELSE), or memory reading or writing [9]. Sims [22] uses nodes that
can generate periodical signals, like sine waves. Other possibilities include mathematical
operators, or programming language syntax, but these are mostly outside the scope of
stimulus-response networks.

Central pattern generators [25] contain relatively small clusters of interconnected neu-
rons that exhibit rhythmic excitation behavior. The patterns that a CPG produces can be
interpreted as either joint torques, muscle activations, or target joint angles [14]. These
constructs are particularly useful in the development of cyclical motions, for example in
walking [25, 26].

2.2 Optimization strategies

Physics-based character animation is particularly suited for off-line optimization tech-
niques, because it is relatively cheap and fast to evaluate large numbers of candidate
controllers. This in contrast to robotics research, where testing can generally not go faster
than real-time, and on-line optimization techniques, such as reinforcement learning [19],
are prevalent.

Evolutionary algorithms are the most commonly used type of off-line optimization strat-
egy for stimulus-response network control. Although many papers suggest EAs could
lead to more natural results [2], there is little evidence to support this, because no papers
compare different optimization methods in this context [14].

The inspiration for evolutionary algorithms comes from the proven successes of bio-
logical evolution, being based on an elaborate method of trial-and-error [12]. Candidate
solutions to the problem at hand are analogous to individual biological organisms. The
parameters that should be optimized are encoded in every individual’s genome (geno-
type), which consists of DNA in biology. The genotype determines an individual’s ob-
servable properties and behavior (phenotype) during its life, or, its evaluation.

Individuals that are more successful as a candidate solution, which is quantified by the
fitness function, have a higher chance of reproduction. This is similar to real life, where
fitter individuals are often more likely to successfully mate and reproduce. Conversely,
individuals that perform badly are killed off early, saving resources.

At the end of a generation (or epoch), after natural selection as determined by fitness
and a survival rate, the surviving individuals reproduce, thus spawning the next genera-
tion’s population. When two individuals mate, genetic recombination (usually crossover)
can occur, effectively splicing different parts of the parent’s genomes together to make up
their child’s new genome. Mutations are applied randomly (albeit within specified lim-
its), slightly changing one or more genes. Both genetic recombination and mutation have
their respective biological analogues as well.

Some evolutionary algorithms also employ speciation; grouping of individuals that
have similar genomes. By limiting the chance of individuals from different species to
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mate, innovations are preserved. Exploring new areas of the search space often leads to
an initial decrease of fitness [23], even though further optimization may eventually lead
to a much better solution than the current optimum. When species are not performing
well enough, they can go extinct, making room for new innovations.

Killing off bad individuals and allowing good individuals to reproduce (natural selec-
tion), drives the search towards better solutions. Recombination and mutation keep the
population diverse, as to explore the search space and find different kinds of solutions.
Speciation protects innovations from being discarded too soon. The evolutionary process
is terminated once the maximum allowed number of generations has passed, or as soon
as one of the individuals reaches a fitness value that is higher than a predefined threshold.

Van de Panne et al. [28] propose Sensor-Actuator Networks (a kind of ANN), of which
they optimize the parameters using a two-phased “dart throwing strategy” that can be
seen as a simplified form of artificial evolution. In the inspiring work of Sims [22] virtual
creatures are allowed to evolve both morphologically and neurally (through a form of
genetic programming [20], not to be confused with [9]). Hase et al. [17] use a network
of neural oscillators (a CPG) of fixed topology with a musculoskeletal model to generate
human gait patterns. The parameters of their neuronal system are optimized through
evolutionary computation.

More recent works on physics-based character animation are using the Covariance
Matrix Adaptation (CMA) [16] evolution strategy. The work of Wang et al. [30, 29] re-
sults in some pretty robust locomotion controllers, and the work of Al Borno et al. [1]
shows highly dynamic and athletic motion. Geijtenbeek et al. [15] create flexible muscle-
based controllers for a variety of bipedal creatures, resulting in robust and natural look-
ing animations. However, these approaches—like other physics-based character control
frameworks that use CMA—are not based on stimulus-response network control.

The methods that are described in Chapter 3 aim to improve upon other approaches
to artificial evolution as a form of off-line optimization. Most related works focus on
creating a single controller for a single type of animation or behavior, without making
many assumptions about how they may relate to each other, or how they might have
developed in vivo. Because humans do not learn to walk “from scratch”, without any
previous motor skills, it makes sense to investigate methods that evolve controllers step
by step. The approach in this work differs from other works in that one starts out evolv-
ing a controller for a simpler behavior, which is then kept static, so that another—more
complex—controller can evolve on top of what has been learned so far. This process can
then be repeated to build ever more complex controllers, consisting of multiple control
modules in a developmental hierarchy.

This way, the modules are kept lean, only adding functionality that is not present in
underlying modules already. Also, all low-level modules remain individually accessi-
ble when new modules are added, so the earlier behaviors can still be used by simply
disabling any higher-level modules. Because controllers in this work are ANNs, this is
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simply a matter of enabling or disabling all links (neural connections) that are part of
those particular modules.
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Chapter 3

Methods

The methods in this work can be described as a neuroevolutionary approach to physics-
based character animation control. The desired controller, that generates deliberate ac-
tuation patterns, is created through an off-line optimization process, so that it may be
used in real-time applications afterwards. In the following sections all components of the
method are discussed individually and in conjunction, roughly in the order in which they
are implemented over the course of the project.

3.1 Musculoskeletal simulation

For both the off-line optimization and real-time demonstrations, the same physical sim-
ulation is used, based on the Bullet physics library [8]. In the demonstration phase, a
custom OpenGL-based renderer is used to visualize the simulation. The combination of
this physics engine and rendering engine will from now on be referred to as “the simula-
tion”, as they are used together in simulating a basic virtual world with a virtual character
in it.

The virtual character is formed from a combination of two datasets from the Open-
Sim project [10], namely the “Gait2329” model [11, 31, 4, 5] and the upper parts from
the “ULB” model, that, in turn, are based on the “UpperExtremities” model [18]. These
models consist of physical data of human body parts, joints, and muscles and how they fit
together. The reason to combine these models is that no single OpenSim model covers the
full musculoskeletal structure of a typical human body in high detail. The ULB model,
for example, has fewer muscles in the lower regions, while Gait2329 has no upper body
muscles at all.

In order to increase simulation performance and stability, a number of degrees-of-
freedom are removed from the final model’s joints, starting with any translational ones.
The joints that govern radioulnar rotation are locked, as they caused numerical instability
and are unlikely to be relevant to the desired animations in this work. One of the two
joints that represent an ankle is similarly removed in both ankles, as to improve stability of

11



the leg. These changes are justified by assuming that the resulting animation controller is
applicable only to this particular model, while the methods themselves should generalize
to almost any physical body (bipeds, quadrupeds, or even non-existing morphologies).

The final human body model that is used here consists of 16 rigid bodies (loosely
referred to as body parts), 15 joints, and 192 muscles (see Figure 3.1). The body parts, vi-
sualized by a collision shape and bone mesh and connected at the joints, form the skeleton
“tree”, originating at the pelvis.

Figure 3.1: From left to right: the skeleton is made up from OpenSim mesh data. From it, the rigid bod-
ies are derived by using axis-aligned bounding boxes around the individual meshes. Virtual muscles are
then parsed from the OpenSim data and attached to the collision shapes. These three components combined
form the virtual physics-based human character that is used in all experiments.

The rigid bodies are initially defined by their mass, moments of inertia, and center-of-
mass. Polygon mesh data is also available to visualize the bones inside each body part,
and in this project this is used in generating elementary collision shapes. This works by
calculating the axis-aligned bounding box for each mesh, and fitting either a solid box
(for the feet to be flat) or capsule shape in that volume. Although this “skin” is not very
realistic in itself in terms of shape or plasticity, it does improve animation quality by not
letting body parts pass through each other, or the world.

Joints impose constraints on the translation and rotation of the body parts they con-
nect, and are defined by their location and orientation therein, as well as their joint limits.
In practice, all joints allow their body parts to rotate around one point to some extent,
while allowing no relative translations. A joint with, for example, three free axes can be
seen as a ball-and-socket system (hip, shoulder), while a 1-DoF joint can be thought of as
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a hinge (knee).
The muscle actuator data from OpenSim is quite comprehensive, and they use rather

sophisticated models to simulate muscle activation and contraction dynamics. This in-
cludes the maximum isometric force of the muscle fibers, optimal fiber length, resting
length of the tendon, and the angle between tendon and fibers at optimal fiber length.
Also, the path of the muscle, along which the forces are exerted, is defined by path points
that signify where the muscle is connected to a bone.

Integration or reimplementation of one of OpenSim’s advanced muscle model is con-
sidered somewhat outside the scope of this project, so a simplified model is used instead,
while holding on to the assumption that the key methods of this work should general-
ize to any other muscle models. The muscle model that is used here consists of an output
muscle force (Fm) in Newton that is dependent on the input muscle activation (am ∈ [0, 1])
and the optimal muscle length ratio (lm ∈ [0, loptm ]):

Fm = am ·
lm

loptm

· Fmax
m (3.1)

So the force that a muscle can generate is in the range of [0, Fmax
m ] Newton, where Fmax

m is
the maximum isometric force that this particular muscle can exert when fully activated.
This maximum force is scaled by the optimal muscle length ratio, which reflects, in a
simplified way, how muscle strength increases with muscle length.

3.2 Neuroevolution

As mentioned in Section 1.2, the animation controller is built from artificial neural net-
works, which traditionally consist of a collection of interconnected nodes, or artificial
neurons. The way these nodes are connected (the topology), and the connection weights
that are associated with their connections (or links), determine how information can be
processed by the network. In this project the NEAT method (NeuroEvolution of Aug-
menting Topologies) [23] is used to optimize both the weights and the topology of the
neural networks for the given fitness functions. NEAT is a genetic algorithm that works
with genomes (genotype) that directly encode neural networks (the phenotype in this case),
which means that information about the nodes and their connections is readily available
from the genome itself. It is therefore possible to convert a genome to a neural network
and vice versa.

At the beginning of the evolutionary process, an initial genome is loaded that rep-
resents a minimal network topology; the number of input and output nodes is predeter-
mined and will remain fixed during evolution. Traditionally, the input nodes are fully
connected to the output nodes, but no hidden nodes are present at first. However, for
some of the problems faced in this work other initial topologies are more suitable, includ-
ing ones that start out with no links at all, or ones that only partially connect inputs and
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outputs. From the initial genome, a population is spawned of N individuals with random-
ized connection weights. Each individual’s fitness value is determined by a fitness function,
indicating how well an individual performs in solving the problem at hand. Then, the in-
dividuals are allowed to reproduce, which involves crossing over of genes (recombination),
and genetic mutation. Individuals with a higher fitness value are awarded a higher chance
to reproduce, while low-ranking individuals are marked for death. When mutations are
applied to the genomes, this can involve a change in connection weight, the addition
of a link, or the addition of a node (by splitting one link into two, with a new node in
between), thus introducing new variations in the population to maintain genetic diversity.

The way in which the fittest individuals are favored over inadequate individuals
drives the exploration of improvements upon promising genomes through mating and
mutations, while “bad” solutions are killed off early on.

After these steps, the next generation in the evolutionary process is started, which in-
volves the same steps of evaluating the (newly formed) population (consisting of sur-
vivors and newborns from the previous generation), applying reproduction, recombina-
tion, and mutations. When an individual is found that represents a perfect solution—or
has a fitness value that is higher than a predefined threshold—the evolutionary process is
terminated. Otherwise, evolution will continue, until a predefined number of generations
has passed, and the individual that performed the best so far is regarded as the (possibly
local) optimum.

Apart from addressing the problem of search space dimensionality by starting with
minimal topologies, other characteristic features of the NEAT method include tracking of
genes with historical markers (this allows crossing over between topologies), and protect-
ing innovation through speciation. For more detailed information on these topics, and the
NEAT method in general, see [23].

3.3 Developmental hierarchy

The desired animation controller in its simplest form is an artificial neural network that
takes control and sensory information as input and produces a vector of actuation values
as output (see Figure 3.2). The goal of this work is to create a method of generating such
a controller that is both good (performing well and looking natural) and fast to generate
(having a relatively short off-line optimization phase). The proposed method is inspired
by biology, and more specifically by some of the phases in child development that are
relevant to motor skills.

3.3.1 Intuition

In the first couple of months after being born, human infants develop only basic motor
skills that allow them to feed, grasp objects (without being able to hold them), and turn
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their head when in a supine position. Around the age of six months, skills like reaching
with arms, sitting, and rolling over are learned. By the age of one year, infants can pull
themselves up to a standing position, and sometimes even start to walk with the support
of an adult. During the next year the infant, now becoming a toddler, can get up and stand
without support, and is able to walk, although still falling quite often. In the following
years, the child learns to walk more easily and upright, while avoiding obstacles and
learning other balancing skills, such as squatting, jumping, and climbing.

Different regions of the human brain are responsible for different human functions
and skills [27]. Sensory cortices receive and process signals of visual, auditory, haptic, and
many other kinds of sensory information. Similarly, the primary motor cortex coordinates
muscle actuation, while other parts of the brain are involved with thought and decision
making, and so on. Most of these regions can be divided into pieces that correspond to
more specific functions.

Output nodes

Control
module #1

Control
module #2

Control
module #3

Input nodes

Animation controller

...

Figure 3.2: A schematic overview of the animation controller in its simplest form. The input nodes feed
sensor and control values into the control modules, which, in turn, produce an actuation pattern that is
transferred to the character simulation through the output nodes. The arrows represent full or partial
connectivity between in- and output nodes and hidden nodes, which are inside the modules. It is possible
for a module to evolve direct connections between input and output nodes.

The stages of motor development in humans are quite different from the training pro-
cesses that are used in most physics-based simulations, where higher-level skills, such as
walking, are being trained for rather directly. In reality, a toddler has first spent many
months learning other motor skills, before learning to start walking from an upright body
pose. This is the main motivation for the method that is proposed here, which involves a
sequence or hierarchy of motor skills that lead up to a desired high-level motor skill. This
hierarchy, consisting of one control module per motor skill, forms the final animation
controller that will be used to animate a physics-based virtual human.
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Analogous to the way the human brain is divided into regions that each have a par-
ticular purpose, each control module is an artificial neural network that controls one
specific—in this case motor—behavior of the character. And just like an infant starts
out by learning a set of rather simple behaviors, the first control module should represent
a relatively low-level motor skill. Once the first module is fully trained for, the second
module is added to the controller, representing a somewhat higher-level motor skill. Dur-
ing the training phase of the second module, the first module is also present and active,
but it is not changed in any way. If the motor skill of the first module is similar to, or
part of, the motor skill of the second module, the second training phase may be shorter
than it would be if the first module were not present. Moreover, if the first motor skill is
indeed—more or less—part of the second motor skill, it may act as bias towards desirable
behavior for the rest of the second module, so that the second training phase may actually
produce more natural-looking results. In the same way, a third module may benefit from
its underlying motor skills, and so on, until the top-level module that represents the final
desired behavior is completed.

This method of building control modules on top of one another may not directly match
the structure or development of the human brain, but it can resemble the order in which
humans develop their various (motor) skills [13]. One of the goals of the experiments
in Chapter 4 is to see if this developmental hierarchy shows any benefits over training a
single desired motor skill directly.

3.3.2 Specification

In order to animate a physics-based character, an animation controller must be built.
In the proposed method, this controller consists of a hierarchy of control modules, that
each have their specific target behavior. The animation controller is optimized by an off-
line optimization process called artificial neuroevolution, which is applied to the control
modules—one by one, breadth first, in the order given by their developmental hierarchy.

Each control module is an artificial neural network that has a number of input nodes
(for control and sensors) and a number of output nodes (for actuation). The control input
nodes can be used for user interaction, while the sensor nodes provide feedback from
the simulation to the controller. The output nodes are connected to physical actuators in
the virtual human character. Conceptually it makes little difference whether these output
values are interpreted as joint torques, desired joint angles, or muscle activations, because
the control modules are trained accordingly during evolution.

Because many control modules use the same sensory information, while producing
output for largely the same actuators, it makes sense to have a single set of input and out-
put nodes that are shared by all modules across the animation controller. This is achieved
by keeping the control modules separate during the evolutionary steps, while merging
them together during evaluation (when determining their fitness). The input and out-
put nodes are immutable by evolution, so they can be considered part of the animation
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controller, but not part of the control modules per se. Conversely, all hidden nodes and
connections that are grown in evolution, can only be part of one of the control modules.

This is why low-level behaviors always remain accessible, even after evolution of
higher-level modules. Any low-level behavior can be expressed by simply disabling all
neural connections that are part of any higher-level control modules, rendering them
completely disabled. Only the control modules that were present during evolution of
that particular low-level module remain active, thus the low-level behavior emerges. The
other way around, higher-level modules may no longer work correctly if one or more
of the underlying modules are disabled. This is because, in the current design, all mod-
ules are activated during evaluation, so high-level modules are evolved taking the lower
levels into account.

It is important to distinguish the concept of a developmental hierarchy from bootstrap-
ping. Although both techniques are used to smoothen the fitness landscape by gradu-
ally increasing complexity, bootstrapping does so during evolution, while developmental
hierarchies act between evolutions. Also, in developmental hierarchies the intermediate
behaviors remain accessible (as mentioned above), whereas they are generally lost when
purely bootstrapping.

In summary, the resulting animation controller can be regarded as a black box that
takes a vector of input values, and produces a vector of output values. The controller is
connected to a physical simulation of a virtual human character, from which it receives
feedback, and to which it provides actuation control information. The novelty of this
controller lies in the way the structure of the internal artificial neural network is generated
in terms of macro-topology using control modules. A developmental hierarchy is applied
to these modules, evolving them in a particular order, and making them interdependent.
Every higher-level control module is optimized while all lower-level modules are active,
thus only adding to the pre-existing behavior.

3.3.3 Application

As a proof of concept of this method, Chapter 4 and 5, discuss the details and results,
respectively, of two experimental setups where an example of a developmental hierarchy
is tested. The following target behaviors are chosen because they are intuitively ordered
in terms of difficulty and complexity:

Posing One of the most basic actions that is generally performed with virtual char-
acters, is keeping them in a desired body pose. In a physics-based envi-
ronment, this means that a character should actively compensate for any
perturbations from external forces, to keep a predefined rigid body pose.

Standing Balanced stance is similar to posing in that the character should try to keep
a (balanced) pose. The difference is that the character should also remain
upright, with both feet on the ground, i.e. it should not fall down.
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Reaching For the purposes of this work, the reaching behavior is defined as moving
the right hand to a target position, while keeping a balanced stance. After
reaching the target, the hand should return to its original position. This
behavioral pattern is then repeated, until the (virtual) end of time.

From these descriptions it is intuitively clear that these behaviors are not equally com-
plex. Furthermore, they each seem to add complexity to the previous behavior. In the
experiments it is hypothesized that when the posing control module is already present,
the standing control module will evolve faster (and possibly better). Similarly, the reach-
ing module could then also evolve faster, being based on the combination of the posing
and standing modules.

Before evolving the controller, the way in which the output of the artificial neural net-
works is interpreted needs to be decided. Possible interpretations—with corresponding
actuators—include joint torques, target joint angles, muscle activations, and so on.

Because humans generate motion using muscles, virtual muscles may be the most bi-
ologically plausible device for animating a physics-based character. The first experiments
in this work use musculoskeletal data measured from actual human bodies, as available
through the OpenSim project [10, 11, 31, 4, 5, 18]. This includes the muscle path, at-
tachment points to the bones, and other physical properties that describe the muscle’s
capabilities.

As muscles can only influence torques in the joints that they span, it makes sense to
group muscles accordingly. Since muscles can span multiple joints, it is possible for a
muscle to be in more than one muscle group. One way that muscles may be used to
control a virtual character is by training a control module for each muscle group, so that
it can actuate all the degrees-of-freedom of the corresponding joint. This way, higher-level
control modules may abstract from having to actuate each muscle individually, by only
controlling the muscle groups through their modules.

Having high-level control modules influence lower ones reinforces the idea of the
developmental hierarchy, but it also complexifies the final animation controller greatly.
When letting control modules evolve sequentially, but having them work in parallel, only
the input and output nodes of the animation controller play a role in the complexity of
the flow of activation, apart from the module’s internal structures. Allowing connections
between modules makes the search space much larger, slowing down evolution.

It turns out that using virtual muscles are a little bit too complex for now (more on this
in Chapter 5 and 6). Instead of using muscles to generate joint torques, it is also possible
to set joint torques directly in the physics engine—and thus interpreting controller output
values accordingly. While this approach may be less biologically valid, the results can still
look quite natural, which is why joint torques are still very commonly used in physics-
based character animation [28, 21, 3, 1].

A second set of experiments involves the controller outputs being interpreted as tar-
get joint angles, which are then converted to joint torques using proportional-derivative
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(PD) controllers. Each degree-of-freedom of every joint has a PD controller (see Equa-
tion 3.2), in which the same kp gains and torque limits are used as Al Borno et al. [1] find
to be appropriate by manual tuning. The kv values are set to 2

√
kp, which maximizes

convergence without overshoot (the PD controller is said to be critically damped [14]). The
resulting torque τ is then clamped to be within±200Nm and applied to the corresponding
joint DoF.

τ = kp(θd − θ) + kv(θ̇d − θ̇) (3.2)
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Chapter 4

Experiments

In order to get an indication of how good the proposed method works, it is important to
have something to compare it to. Thus, a set of animation controllers, that are generated
using the proposed method, is compared to a set of baseline controllers. Since the point
of the method is to have a developmental hierarchy—consisting of control modules—
that guides the evolution of its internal artificial neural network, the baseline controllers
are using only a single control module. This is equivalent to evolving the structure and
connection weights of a single neural network to fit the desired behavior.

In the following sections, the conditions and setup of the experiments are discussed,
along with the fitness function and how it coaxes evolution towards producing better
individuals. Section 4.2 and Section 4.3 discuss experiments that each interpret actuation
patterns from the controllers in a different way; this influences the complexity of the
search space, and may lead to different results.

4.1 General setup

The ultimate behavior of the desired animation controller is being capable of reaching
a target position with the right hand, while standing upright (as described in Subsec-
tion 3.3.3). Intermediate behaviors are posing and standing. In order to evaluate the
proposed method, controllers that are using the developmental hierarchy are compared
to ones that are not.

Since posing is, in this project, an elementary behavior (meaning that it has no un-
derlying behaviors), the corresponding experimental and baseline control modules are
exactly the same. Therefore, no comparison is needed in this case.

At the level of standing, the experimental case is different from the baseline case in
that it includes both the posing and the standing control modules. The baseline standing
controller contains only the standing control module.

Similarly, the baseline reaching controller contains only the reaching control module,
while the experimental reaching controller contains the posing, standing, and reaching
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control modules. This is the most complex controller that is treated in this work, but
many more target behaviors or further expansions are conceivable.

Firstly, the posing module is evolved. Secondly, the experimental modules of stand-
ing and reaching are evolved, both using their respective predecessor modules. Thirdly,
the baseline control modules for standing and reaching are evolved individually. The
resulting animations are then inspected visually, to compare their ’naturalness’. During
evolution, metrics are stored so that, afterwards, timings and fitness progress can be com-
pared.

Output nodes

Posing
module

Standing
module

Reaching
module

Input nodes

Animation controller

Figure 4.1: A schematic overview of the final animation controller, as generated using a developmental
hierarchy of posing, standing, and reaching. Similarly to Figure 3.2, sensor data flows to the individual
control modules, that, in turn, produce an actuation pattern in the output nodes. The dotted arrows repre-
sent which lower-level modules are active during evolution of higher-level modules. Section 6.2 discusses
how these arrows could, in future projects, represent actual connections, so that modules can influence each
other’s behavior.

As discussed above, and shown in Figure 4.1, the control modules are evolved in
a particular sequence. In Chapter 3 the method is stated to involve a developmental
hierarchy, this sequence being a simple form of one. Because of limited time and resources,
implementing a developmental hierarchy that includes multiple branches is left to future
works. One might imagine expanding the controller with a walking control module, that
derives from the posing and standing modules, and is at the same level as the reaching
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module. To achieve these layers, however, it may be required to let high-level modules
influence how and when low-level modules are activated. It is possible that not all low-
level modules are necessary in establishing all high-level behaviors. This is an example of
how employing a developmental hierarchy can lead to a rather complex controller, that
can be used for a range of different animations.

4.1.1 Fitness functions

For every evolutionary generation, all individuals in the population have to be evaluated
to determine their fitness. These fitness values are the driving force behind the evolu-
tionary process (see Section 3.2). The evaluation of an individual consists of running the
physical simulation of the virtual human character with the animation controller (derived
from the individual’s genome) attached to sensors and actuators. The motion of the char-
acter is then measured and compared to a number of objectives, determining how well the
controller is performing. Each control module in the animation controllers is evaluated
using a different fitness function, which can contain some of the same objectives.

The fitness values are calculated using the following formula, where fW denotes the
fitness value, given a set W of error-weight value pairs (x,w).

fW = 100 ·

δt
T

∏
(x,w)∈W

1 +
w

1 + x

 (4.1)

The number of simulation frames that have passed without the individual failing is
denoted δt, with relation to the target number of frames T . A factor 100 is used to boost
fitness values, because the NEAT algorithm cannot deal with (initially) very small num-
bers. The specific error weights for each module are shown in Table 4.1. An individual
fails, as a form of early termination, if one of its metrics exceeds a particular threshold,
which depends on the control module and is fine-tuned by hand.

An objective is a way to express a desired property of the produced animation. For
example, when standing, the character should not fall down. This can be quantified by
measuring the distance between the character’s center-of-mass and a target position. If
this distance becomes too large, the character is said to have fallen; the objective is to min-
imize that distance. Most objectives are implemented using error metrics, meaning that
the corresponding values should be optimized or minimized over the course of evolution.

Many error metrics that appear in this work are also used by Al Borno et al. [1], who
demonstrate balanced stance, walking, and various other complex motions, using such
simple specifications. These error metrics, among a couple of new ones, are used in the
control modules as follows.
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Posing

The fitness function of the posing control module consists of just two objectives. The first
one has a corresponding error measure ErestPose.

ErestPose =
∑
j∈J

∑
t

(θj,t − θj,t)2 (4.2)

This term is used to have the character converge towards a particular body pose, as
defined by target joint angles θj . This can be done for either all simulation frames t, or
for just the end state, which is the second posing objective. The joint degrees-of-freedom
j are in a set J that comprises a specific number of joints, that depends on which part of
the body needs to be constrained.

In the second posing objective, where the end state is evaluated (in ErestPoseEnd), the
sum over all simulation frames is removed from the equation.

ErestPoseEnd =
∑
j∈J

(θj − θj)2 (4.3)

A posing individual fails as soon as its ErestPose becomes larger than 200π.

Standing

For the standing module, the same objectives and early termination conditions are used
as for the posing module, with the addition of two more. These are the ones that make
sure that the character not only has an upright pose, but also keeps its balance, by shifting
its center-of-mass, and by keeping its feet on the ground.

ECOM = (c− c)2 (4.4)

whereECOM is the squared distance of the character’s center-of-mass c to a target position
c at the desired height. This leads to the behavior of the character trying to keep its
balance.

Efeet = y2leftFoot + y2rightFoot (4.5)

where Efeet is the sum of the squared altitudes of both feet, where minimizing leads to
the feet staying on the ground, which helps in finding a balanced pose. Both ECOM and
Efeet are calculated at the end of an evaluation, so it is the final body pose that counts.

A standing individual fails as soon as the altitude of the center-of-mass of the character
is too low (20 cm sub-target), or when the feet are either too far off the ground (higher than
20 cm), or too far apart (more than 50 cm).
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Reaching

Like, the standing module, the reaching module uses all of its predecessors’ objectives,
and adds two of its own.

The main reaching error metric is the sum of two components, representing moving
the right hand h towards the target position htarget, and moving back to the rest pose hrest.
The notation of t(f) is used for those simulation frames that are spent moving the hand
towards the target, and t(b) for the ones moving back.

Ereaching =
∑
t(f)

(ht − htarget) +
∑
t(b)

(ht − hrest) (4.6)

Finally, an error metric for control torque is added to prevent the reaching arm from
showing jittery motions. Such chaotic forces need to be minimized because they can,
along with the body’s shifted center-of-mass, easily bring the character out of balance.
Interestingly, this error metric does not seem to be required for the other two control
modules.

Etorque =
∑
j,t

τ 2j,t (4.7)

is the sum of the control torques τ over every degree-of-freedom j of the joints, for all
simulation frames (time steps) t.

It should be noted that the reaching controller is the only one that is rewarded an
additional fitness bonus for every time the hand successfully reaches the target, and every
time it is successfully returned to the rest pose. This is necessary to stimulate evolution
to select individuals who reach for the target more than once. Without a bonus for target
reaching, additional reaching iterations would result in higher error rates, for which the
reward for additional successful simulation frames cannot compensate.

The reaching module has similar early termination thresholds as the standing module,
but in calculating ErestPose, the joints of the right arm are not included when it should be
reaching for the target pose. One additional termination condition is a measure of how far
the right upper arm is intersecting the thorax. This is undesirable behavior, yet can occur
because no collision detection is done between rigid bodies that are directly connected to
each other by a joint, in this case the right shoulder.

The behavior of alternating between reaching for the target and the rest pose is gov-
erned by a simple finite state machine, that switches back and forth between the two states
each time one of the goals is reached and a predefined number of simulation frames i has
passed. This is what makes the difference between “standing” and “not-reaching”. Also,
to award a bonus for reaching either goal, the fitness function for reaching individuals is
augmented with the awarded bonus and the theoretical maximum bonus (set to 100T

i
).
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Module ErestPose ErestPoseEnd ECOM Efeet Ereaching Etorque Threshold
Posing 3 1 - - - - 95%
Standing 1 1 1 1 - - 94%
Reaching 1 1 1 1 2 1 55%
Posing (equal) 3 1 - - - - 95%
Standing (b.l.) 2 1 1 1 - - 93%
Reaching (b.l.) 2 1 1 1 2 1 55%

Table 4.1: The error weights for each control module’s fitness function are tweaked manually. The lower
half of the table shows the baseline (b.l.) controllers, with the posing module shown twice for completeness.
Threshold fitness percentages (of the theoretical maximum fitness value—which also depends on the error
weights) for each module indicate when their performance is deemed “good enough”, so that the evolutionary
process may be terminated. These thresholds are hand-tuned to fitness levels that are not likely to be exceeded
soon.

4.2 Experiment 1: Muscle-based controller

The first experiment is based on animating the physics-based character using a virtual
muscle model, as described in Section 3.1. Because each muscle in the character needs to
be actuated individually, each muscle has its own output node in the controller. Because
there are so many muscles (192 in total), evolving a neural network that can generate
appropriate actuation patterns is a very complex task. To make things worse, in order to
provide feedback to the neural network, sensor nodes for all joint DoFs are required. In
an attempt to overcome this problem, an extra layer of control modules is added to the
hierarchy, dedicated to producing actuation patterns for muscle groups instead.

This “lower motor layer” is evolved as an abstraction layer, so that higher-level control
modules have a way of generating joint torques without having to address each muscle
by themselves. A visualization of just this layer, as combined into a single artificial neural
network, is shown in Figure 4.2. The lower motor layer consists of control modules (not
to be confused with the way nodes can be clustered in the network) that each control
one degree-of-freedom of a joint. Each control module addresses only the output nodes
that correspond to muscles in that muscle group, while only one joint DoF sensor node
is required per module. Quite similar to the ErestPose from Subsection 4.1.1, the fitness
function of these modules is based on converging to target joint angles.

The goal of the muscle-based experiment is to see if the proposed method of develop-
mental hierarchies is useful in constructing animation controllers that can generate mus-
cle activation patterns. This can be tested by generating the layers as described above,
evolving them, and then comparing them to the baseline controllers.
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4.3 Experiment 2: Joint torque-based controller

With muscle-based controllers being a rather ambitious goal, the second experimental
setup focuses on a much more commonly used joint torque-based controller. In this setup,
there are 27 output nodes to the neural network, each corresponding to a single degree-
of-freedom of the character’s 15 joints—not all joints having all three rotational DoFs
unlocked. This is a number that is quite a lot smaller than the number of muscles in the
body. Therefore, no extra abstraction layers are needed to support the poser and higher
control modules.

The output actuation values are interpreted as target joint angles, in the same way as
Allen et al. [3] do for their controllers. This involves the use of proportional-derivative
(PD) controllers to convert target joint angles to joint torques (as discussed in Subsec-
tion 3.3.3). The initial structures of the control modules are similar to the initial baseline
modules, as shown in Figure 4.3.

The goal of the joint torque-based experiment is to see if the proposed method of de-
velopmental hierarchies is useful in constructing animation controllers that can generate
desired joint angles under PD control that lead to the desired motions. This is tested by
evolving the posing, standing, and reaching modules sequentially, and then comparing
the resulting controllers to the baseline controllers.
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Figure 4.2: A visual representation of the artificial neural network that forms the “lower motor layer”. Note
how the nodes are clustered in a way that corresponds to the human character’s physiology. The smallest
cluster—in the top left—corresponds to muscles that connect the pelvis and thorax. The other two pairs of
clusters correspond to the pairs of legs and arms respectively. The white nodes are output nodes, that are
each connected to a single muscle. They are fully connected by the colored nodes within the same cluster,
which are input nodes, used to control joint actuation. The actual muscle-based animation controller also
includes sensor nodes for each joint DoF, which are hidden in this overview. Also, this particular controller
network is generated from a starting genome, so it has not been evolved yet. The evolved controller would
include many more connections and hidden nodes.
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Figure 4.3: Visualization of the baseline reaching control module’s initial artificial neural network. Note
how this initial network is much smaller than the muscle-based variant in Figure 4.2. The inner nodes
(labeled “Balance”) provide sensory data on where the character’s center-of-mass is, with relation to a target
position, in which the character would be balanced. The surrounding nodes (“Output”) each correspond to
a degree-of-freedom of one of the joints, of which the names and axes are also in the labels. The sensor nodes
and output nodes are fully connected at the start of evolution, because much interaction is expected in the
balance (sub-)task: the center-of-mass is easily shifted in all directions. The lower-right “Reach Control”
input node is used to advance the reaching finite state machine (Subsection 4.1.1). The top-right “Bias”
input node always has an activation of 1.0, allowing the network to spread activation, even though none
may be available through other inputs. Any necessary connections from these last two nodes need to emerge
over the course of evolution.
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Chapter 5

Results

In the next sections, the results of the various evolutionary processes and the final perfor-
mance of the animation controllers are shown and compared. Any further interpretation
of these analyses is left to the discussion in Chapter 6.

5.1 Results 1: Muscle-based controller

Due to the high complexity of the “lower motor layer”, no complete animation controller
is produced that is based on muscle actuation. Each individual control module (respon-
sible for a single joint DoF) has to have its own evolutionary process, so it takes a lot of
time to process the full body. This allows for but a few opportunities to see the results
and to further tweak the evolution parameters.

A side effect of using muscles in the physics engine, is that forces are exerted on the
rigid bodies, and not at the joints directly. This leads to instabilities at times when many
large opposing muscles, that span a single joint, are activated all at once, causing rigid
bodies to intersect and drift into other unnatural positions.

Even with most of the lower level working to some extent, it proves difficult to actually
make use of it in terms of higher level control modules. Although each joint DoF can be
controlled separately, with the DoFs of all other joints temporarily locked, controlling a
complete joint in a meaningful way is quite another problem. For example, the evolution
of the posing control module, on top of the lower motor layer, does not converge. Upon
closer inspection, the muscle groups seem to produce rather twitchy forces that lead to a
chaotic and unstable character.

With the muscle-based controllers being incomplete, it is quite hard to quantify these
results. Also, it makes little sense to compare them to any baseline controllers, other
than to say they are not working yet. Because of a lack of time to solve the encountered
problems, the second experimental setup is given priority. Section 6.2 provides a some
pointers for future work to continue with a muscle-based application of developmental
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hierarchies, which, as far as the method itself goes, still seems quite promising. This is
discussed in Chapter 6.

5.2 Results 2: Joint torque-based controller

The second set of experiments is completed successfully, so that its results can be com-
pared to the baseline controllers. These results are twofold: the animation controller that
is generated using a developmental hierarchy is compared to both the “standing”, and
the “reaching” baseline controllers, as “posing” is equivalent in both the experimental
and baseline case.

As opposed to the first experimental setup, the joint torque-based approach actually
produces viable animation controllers. Over the course of evolution, the developmental
hierarchy of posing, standing, and reaching is playing out nicely, leading to a combined
controller that can do all three of those things. The user can toggle individual modules on
or off, thus changing the behavior of the controller. Details on the evolutionary progress
of the different controllers are shown in Figure 5.1, and summarized in Table 5.1. Without
exception, the baseline controllers took longer to evolve (if at all), or otherwise achieved
lower levels of fitness.

Module Generations Processing time
Posing 42 8 min 25 sec
Standing 36 11 min 55 sec
Reaching 122 35 min 16 sec
Combined 200 55 min 36 sec
Posing (equal) 42 8 min 25 sec
Standing (baseline) 803 240 min 1 sec
Reaching (baseline) > 1600 > 270 min
Combined (baseline) > 2445 > 296

Table 5.1: Shown here, are the number of generations and the amount of time taken for each of the control
modules to fully evolve. Posing is shown twice, for completeness.

5.2.1 Experimental control modules

When visually inspecting the results, the posing behavior results in the character becom-
ing rigid, while trying to keep the target pose (which, in this case, is a rest pose). Applying
external forces or collisions to the body makes the body parts diverge from their resting
positions slightly, only to quickly return to them immediately.

The standing behavior works as expected, and in this regard it is a bit more interest-
ing, because the character actually has to do something. An upright pose is kept, with the
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character rocking back and forth a bit at the start. This is due to an initial imbalance, as the
character is spawned with its feet a couple of centimeters above the ground. Without ap-
plying external forces, the standing behavior lasts indefinitely, but the character is slowly
sliding away from its initial position in a sideways spiraling motion. This is caused by the
character slightly swaying sideways in trying to balance itself. When recovering balance
from leaning backwards, the toes are vibrating up and down a bit. This is easily remedied
by imposing passive spring-dampers at the joints, with a spring constant of 30 Nm / rad
[15, 30].

Reaching is the most complex task in this experiment, and it therefore takes the longest
time to evolve a solution. One of the control nodes of the neural network is used to toggle
between the two states of either reaching or not-reaching. This switch is automated in
the implementation, so that it toggles once every one or two seconds (simulation time),
with a pause of one second in between (stay at target), on the condition that the character
has actually reached its target by then. This works: the right hand is raised towards the
target, stays there (albeit somewhat shaky), and then moves back whence it came.

5.2.2 Baseline control modules

The baseline standing controller takes a lot (about twelve times) longer to evolve than
its hierarchical counterpart, yet results in a balanced stance that is of similar quality. In
terms of body pose it is slightly less symmetrical, hanging to its left side, and the upper
body is a bit more shaky (originating in the pelvis) while keeping balance. Vibrations in
the character’s feet are about equally visible, but sliding over the ground plane is more
slowly and in a mostly forward direction. The character adopts a wider stance, which
may provide better balance under lateral external forces.

Evolution of the baseline reaching controller starts out with a long period in which
the controller learns how to keep a balanced pose. The right arm is, indeed, not kept at
its resting position to the right of the thorax. Instead, in later generations, it is pulled
upward in a jerky motion, independent of whether the reaching state is activated or not.
Most of the time this causes the character to lose balance, and fall to the ground. Unfortu-
nately, after passing a time limit of 4.5 hours, evolution does not converge to an acceptable
solution.

5.2.3 Comparison

When comparing the results of evolution, as presented above, the experimental modules
are coming out ahead in terms of both the time and number of generations that are needed
to converge to a solution. The experimental controller is generated in under an hour
of evolution, while the baseline controllers take several hours apiece. Also, generations
for the baseline controllers seem to take less time (19.9 versus 17.9 sec / generation on
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Control module Input Hidden Output Links Performance
Standing 6 0 27 135 913.9 act/sec
Standing (baseline) 6 9 27 171 473.0 act/sec

Table 5.2: A comparison of the artificial neural networks that make up both the experimental and the
baseline standing controller. Shown are the number of input, hidden, and output nodes, and the number of
connections between nodes. Also, the performance of each network is given as the average number of network
activations calculated per second (from 30 samples, each calculating 1 million network activations).

average for the standing controllers, not tested for statistical significance), but they do
require many more of them.

Another interesting observation is that the baseline modules tend to evolve larger
genomes (having more connections and hidden nodes), while not necessarily showing
better performance (in terms of fitness). This is probably due to the properties of com-
plexification over time that are inherent to the NEAT algorithm. Computations on net-
work activation do take more time on larger networks, but this is hardly noticeable in
these applications. For example, when comparing the experimental standing controller
network with its baseline (see Table 5.2), the number of network activations per second is
much higher than the 60 frames per second that are commonly used in real-time render-
ing. Neural network visualizations are shown in Figure 5.2.

Judging the naturalness of the motion that is produced is quite hard, and may, in the
light of the foundational nature of this project as it developed over time, not be appropri-
ate for now. The goal of achieving natural-looking motion could be better suitable for fu-
ture projects, where most of the elementary issues have been straightened out. For exam-
ple, the reaching controller is solving a problem that is almost purely inverse-kinematics.
That is, for now it is more important that the targets can be reached, and not so much that
it also looks as natural as possible. That being said, because of the basis in biological data,
and the possibility of future support for muscle-actuation, developmental hierarchies still
show a lot of potential for naturalness.
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Figure 5.1: The first graph shows the evolutionary progress of the experimental animation controller with
developmental hierarchy. In the other two graphs, the evolution of the experimental controller is compared
to that of the two respective baseline controllers.
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Figure 5.2: An overview of the different controller module networks that are combined to form the artificial
neural network for the “reaching” controller. Note how input and output nodes (doubly encircled) are
merged across modules. The dashed links between nodes have become disabled during evolution. Numbers
are shown next to all other links to indicate connection weights.
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Chapter 6

Discussion

In this work, a developmental hierarchy is applied to the evolution of a relatively com-
plex physics-based character animation controller. This means that the artificial neural
network that makes up that controller is composed from a number of interdependent
sub-networks; the control modules. It is hypothesized that evolving these modules one-
by-one, with each of them dependent on its predecessors, will allow evolution to con-
verge faster—and possibly with better or more natural-looking results—than for a pair
of baseline controllers. Both muscle-based actuation and joint torque-based actuation are
tested.

The modern movie and gaming industries show an ever-increasing demand for high-
quality computer animations. With manual keyframing out of the question, kinemat-
ics not looking natural enough, and motion capturing being very time- and resource-
consuming, this encourages a lot of research towards finding a method of automatically
generating flexible, physically accurate, and natural-looking animation controllers. Self-
organizing modular neural networks, like the ones shown in this work, can be a step
toward reaching that goal.

Evolving both the experimental and baseline control modules, based on joint torque
actuation, resulted in the hierarchical ones converging to a solution much faster than the
baseline. Generating the baseline standing module took about twelve times as long as its
hierarchical counterpart, for example, but the resulting controllers performed just about
equally well. The baseline reaching controller does not seem to converge to a good solu-
tion (at least not within the imposed time limit of 4.5 hours). However, the experimental
reaching controller did, to all satisfaction, showing one of the benefits of this method. All
in all, the concept of using a developmental hierarchy in neuroevolution works well in
the context of this work.

Unfortunately, the experiments that are based on muscle-actuation did not succeed.
However, in the light of the results of the joint torque-based controllers, and how hard it is
to find the right evolution parameters for them, it is possible that evolving muscle-based
control modules simply requires a different fitness function to converge to a solution. An
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intermediate step may be to take a set of desired joint torques, and then use a muscle-
based variation of Jacobian transpose control [24] to calculate the muscle activations that
are necessary to achieve those torques, as done by Geijtenbeek et al. [15]. Investing more
time and resources in finding a setup that is more suitable to muscle-actuation than the
one presented in this work, may still prove to be worth the effort.

According to these results, the benefits of using developmental hierarchies in char-
acter animation controllers still hold. The modularity of the controller allows for all in-
termediate behaviors to be used, where the baseline controllers are like a black box in
that regard. The hierarchical approach evolved faster, and also more reliably: tuning
parameter settings results in different evolution times and solutions, where the baseline
controllers would oftentimes fail to converge. It is also possible to take out and re-evolve
just one control module, but any higher-level modules may malfunction: the separation
of responsibilities between modules should be investigated further.

However, evaluating the naturalness of the results is rather difficult. Both baseline
and experimental animation controllers generate motion that is, in terms of human be-
havior, somewhat awkward, to say the least. Of course, the target behaviors are of a fairly
mechanical nature, so one may argue that naturalness is of little relevance for now. This
may change as soon as larger hierarchies, generating more diverse motion, are tested in a
context where behaviors are chained to show more complex actions. Think of navigating
an obstacle course, or walking over to an object and picking it up, or interactions between
characters.

It is important to mention that it is very hard to find a set of parameters that reli-
ably leads to good controllers. The number of possible combinations of configuring the
physical simulation, the evolution parameters, and the fitness functions combined, is ab-
solutely huge. This makes it quite difficult to evaluate the robustness of the method’s
ability of generating useful animation controllers in general. Nonetheless, in these par-
ticular experiments, developmental hierarchies are easier to configure than the baseline
cases. If only because their evolution converged faster, thus revealing the effects of the
current parameterization much faster.

6.1 Conclusion

The proof of concept for developmental hierarchies in neuroevolution of physics-based
animation controllers has succeeded. This work shows that, for at least the joint torque-
based approach, the resulting animation controllers evolve at a faster rate of convergence
than the baseline, while performing comparably well at generating the desired motions.
For complex (compounded) animations, these methods may work even better, because
in such cases the baseline method is unlikely to converge within a reasonable amount of
time, if at all.

However, the large number of parameters that have to be manually tuned, and the un-
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predictable nature of neuroevolution in general, form a complex problem on their own.
Finding a set of parameters that will reliably lead to the best possible results is a non-
trivial task. That being said, developmental hierarchies in neuroevolution are a promis-
ing, and—to the author’s knowledge—novel approach to creating complex animation
controllers from a set of simple objectives.

6.2 Future work

Generating modular animation controllers with relatively simple developmental hierar-
chies, like the ones used in this work, are but the beginning of exploring the new possi-
bilities of this method. Many improvements, tweaks, and expansions are possible, both
in the method itself and in its scientific context. The following listing discusses some of
the ideas that came to mind over the course of this project’s development.

Complexification: It may be interesting, and, indeed, necessary, to build and test more
complex and diverse developmental hierarchies. The relatively simple posing -
standing - reaching sequence that is demonstrated here clearly does not stretch the
limits of what is possible using these methods.

Muscle actuation: Even though the initial experiment on muscle-based actuation did not
succeed, it is conceivable that exchanging the current fitness functions for more suit-
able ones may eventually lead to better results.

Interconnectivity: In the current setup, higher-level control modules are forced to deal
with all their predecessor’s behaviors. One of the original ideas, which has not
been tested due to time constraints, includes top-down interaction between mod-
ules, so that high-level modules can actively control the activation of all lower-level
modules. This may enable even more complex behaviors, because unnecessary and
unwanted modules can be switched off at any time, and vice versa.

Hot-swapping: It may be worth investigating to what extent behaviors between layers
are overlapping. If all modules are strictly adding actuation patterns that are needed
for their own target behavior, it may be possible to perform “brain surgery”. This
could enable the re-training of modules that are underperforming, while all other
modules remain intact, or trying out different solutions to the same problem by
swapping modules at will.

Off-line optimization: In this work, the original (yet slightly modified) implementation
of the NEAT algorithm is used. In theory, however, the concept of developmental
hierarchies can also be applied to other off-line optimization techniques. Examples
of particularly interesting alternatives, as used in many related works, include Hy-
perNEAT and Covariance Matrix Adaptation (CMA) [16].

39



Parameter reduction: The huge number of parameters that need to be tweaked in order
to reach optimal evolutionary performance is undesirable, as it is a tedious and
time-consuming task of trial-and-error. Finding a way to reduce this number would
be of great benefit to many research projects. It may be possible to find a set of
parameters that can be kept constant across projects, thus limiting the search space.

Reflexes: Fisher [13] mentions his suspicions that there may be a “reflex tier” in the hier-
archical development of skills, of which reflexes in infants may be the initial units
from which skills are constructed. It may be interesting to build a library of (biolog-
ically) known and verified human reflexes, and building abstractions in the form of
developmental hierarchies from that.

Standard model: One of the problems on the physical simulation side of this work lies in
the fact that there does not seem to be a standardized way of dealing with physics-
based character models. Most of the works in the field use either ODE or Bullet, but
there are no neuromusculoskeletal character models that are used by a wide range
of researchers. This may be due to the pioneering nature of current active-physics-
based research. Of course, the OpenSim project is of great value because of its tools
and datasets, but building custom experiments from their data is still a lot of work.
Having a common collection of such models may be beneficial to the field, as it can
save people a lot of time and resources. But, most importantly, it allows for easy
comparison of different methods.
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Appendix A

Parameters

When working with neuroevolution there are so many parameters that need to be taken
into account, that it is easy to lose track of them all. To address this, the following tables
give an overview of the (most important) parameter settings that are used in this project.
Apart from the NEAT parameters, also the fitness function parameters are included (Sub-
section 4.1.1), as well as some of the physical properties of the physical human body
(Section 3.1).

Mass Body parts Joints Muscles
75.16 kg 16 15 192

Table A.1: A short summary of the body’s physical properties.

Body part Mass Friction coefficient
pelvis 15.6% 0.5

thorax 35.7% 0.5

femur (s) 12.4% 0.5

tibia (s) 4.9% 0.5

talus (s) 1.8% 0.8

toes (s) 0.3% 0.8

humerus (s) 2.7% 0.5

forearm (s) 1.6% 0.5

hand (s) 0.6% 0.5

Table A.2: Mass distribution over the body parts, which are often named by bones they contain. The body
parts marked with (s) should be counted twice, due to the body’s bilateral symmetry. Friction coefficients
for the feet are higher to reflect the effects of rubber shoe soles.
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NEAT parameter Experimental Baseline
trait param mut prob 0.0
trait mutation power 0.0
linktrait mut sig 0.0
nodetrait mut sig 0.0
weigh mut power 0.5
recur prob 0.0
disjoint coeff 1.0
excess coeff 1.0
mutdiff coeff 0.4
compat thresh 3.0
age significance 1.0
survival thresh 0.20
mutate only prob 0.25
mutate random trait prob 0.0
mutate link trait prob 0.0
mutate node trait prob 0.0
mutate link weights prob 0.9
mutate toggle enable prob 0.001
mutate gene reenable prob 0.0001
mutate add node prob 0.03 0.003
mutate add link prob 0.05 0.005
interspecies mate rate 0.005
mate multipoint prob 0.6
mate multipoint avg prob 0.4
mate singlepoint prob 0.0
mate only prob 0.2
recur only prob 0.0
pop size 512
dropoff age 32 64
newlink tries 20
print every never
babies stolen 0
num runs 1
normalize 1 0

Table A.3: NEAT parameters for experimental and baseline cases. Only different values are shown in
the baseline column: the mutation parameters are lowered to prevent the genome size from exploding. The
dropoff age is increased, to give younger species a better chance of developing good performance. The nor-
malization parameter toggles normalizing for genome size in the genome compatibility calculations.
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Appendix B

Software

Over the course of this master’s thesis project, a variety of software packages has been
used. The following sections give a brief overview of the way in which these tools and
libraries are used. All software is run on Microsoft Windows (7/8.1), with the exception
of an SVN repository, which is being hosted on a Linux machine.

Microsoft Visual Studio: For the main implementation of the experimental setups Mi-
crosoft Visual Studio 2010 is used, with the programming language of choice being
C++. All neuroevolutionary code is based on NEAT (NeuroEvolution of Augment-
ing Topologies) [23], by adapting the original implementation.

The Bullet physics library [8] is used for rigid body simulation and collision detec-
tion. A custom renderer is written using the OpenGL graphics API and The OpenGL
Extension Wrangler Library (GLEW). Image manipulation is done through DevIL.

Revision control for this project is managed with Subversion (SVN), both through
the TortoiseSVN shell extension and the AnkhSVN plugin for Visual Studio.

OpenSim: Most of the physical data used to construct the virtual human character comes
from, or is derived from, data sets provided through the OpenSim project [10, 11,
31, 4, 5, 18]. In particular, the “Gait2329” model and parts from the “ULB” model,
based on the “UpperExtremities” model, were used.

Eclipse Kepler: This thesis is itself written in LATEX, through MiKTeX, using the TeXlipse
plugin for Eclipse. The bibliography is managed with BibTeX. Revision control is
managed with SVN, using the Subclipse plugin for Eclipse.

Other tools that are used include GraphViz (digraph, sfdp), to create all visualizations
of artificial neural networks. The relevant scripts are generated during evolution by the
experimentation programs. Schematic overviews of the animation controllers are made
using InkScape.
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